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Abstract. A tree is called a caterpillar if all its leaves are adjacent to the
same its path, and the path is called a spine of the caterpillar. Broersma
and Tuinstra proved that if a connected graph G satisfies σ2(G) ≥ |G| −
k + 1 for an integer k ≥ 2, then G has a spanning tree having at most
k leaves. In this paper we improve this result as follows. If a connected
graph G satisfies σ2(G) ≥ |G|−k+1 and |G| ≥ 3k−10 for an integer k ≥
2, then G has a spanning caterpillar having at most k leaves. Moreover,
if |G| ≥ 3k − 7, then for any longest path, G has a spanning caterpillar
having at most k leaves such that its spine is the longest path. These
three lower bounds on σ2(G) and |G| are sharp.

1 Introduction

We consider simple graphs, which have neither loops nor multiple edges. For a
graph G, let V (G) and E(G) denote the set of vertices and the set of edges of
G, respectively. We write |G| for the order of G (i.e., |G| = |V (G)|). For a vertex
v of G, we denote by degG(v) the degree of v in G. We define σ2(G) to be the
minimum degree sum of two nonadjacent vertices of G. An end-vertex of a tree
is often called a leaf. A tree T is called a caterpillar if T contains a path such
that all the vertices not contained in the path are adjacent to the path. In other
words, a tree is a caterpillar if the removal of its leaves results in a path. Let
T be a caterpillar. Then T has a path P connecting two leaves such that all
the leaves of T not contained in P are adjacent to P . This path P is called a
spine of T . Notice that the path Q obtained from T by removing all the leaves
of T is often called the spine, however, for convenience, in this paper a spine of
a caterpillar connects two leaves of a caterpillar and includes the path Q.

Recall the classic theorem of Ore [6] on a hamiltonian cycle.

Theorem 1 (Ore [6]). Let G be a connected graph. If σ2(G) ≥ |G|, then G has
a hamiltonian cycle.
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This theorem implies the following corollary on a hamiltonian path.

Corollary 1. Let G be a connected graph. If σ2(G) ≥ |G| − 1, then G has a
hamiltonian path.

This corollary was generalized as follows by introducing a tree having at most
k leaves. Notice that a hamiltonian path is a spanning tree with two leaves.

Theorem 2 (Broersma and Tuinstra [3]). Let k ≥ 2 be an integer and G
be a connected graph. If σ2(G) ≥ |G| − k + 1, then G has a spanning tree with
at most k leaves.

Our main result is the following theorem, which says that under the same
condition of Theorem 2, if the order of G is sufficiently large, then G has a
spanning caterpillar having at most k leaves.

Theorem 3. Let k ≥ 2 be an integer and G be a connected graph. If σ2(G) ≥
|G| − k+ 1 and |G| ≥ 3k− 10, then G has a spanning caterpillar having at most
k leaves.

Furthermore, we obtain the following result, which requires the spine of a
spanning caterpillar to be a given longest path.

Theorem 4. Let k ≥ 2 be an integer and let G be a connected graph. Let P be
a longest path of G. If σ2(G) ≥ |G| − k + 1 and |G| ≥ 3k − 7, G has a spanning
caterpillar having at most k leaves such that its spine is P .

We first show that the degree conditions of Theorems 3 and 4 are sharp. It
is shown in [3] that the condition σ2(G) ≥ |G| − k + 1 is sharp for a graph to
have a spanning tree with k leaves.

We now show that the order condition of Theorem 3 is sharp. Let Km denote
the complete graph of order m. Assume that k ≥ 6. For each 1 ≤ i ≤ 3, let Hi

be a copy of Kk−5. We construct a graph G as follows: V (G) = {w, v1, v2, v3} ∪
V (H1) ∪ V (H2) ∪ V (H3) (disjoint union), w is adjacent all the vertices of H1 ∪
H2 ∪ H3 and vi is adjacent to all the vertices of Hi for each 1 ≤ i ≤ 3. Then
|G| = 3(k − 5) + 4 = 3k − 11 and

σ2(G) = degG(v1) + degG(v2) = 2(k − 5) = |G| − k + 1.

However G has no spanning caterpillar. Thus the condition |G| ≥ 3k − 10 is
sharp.

We next show that the order condition of Theorem 4 is sharp. Assume that
k ≥ 5. Let Hi be a copy of Kk−3 for each i ∈ {1, 2} and let H3 be a copy of Kk−4.
We construct a graph G as follows: V (G) = {w, v3} ∪ V (H1) ∪ V (H2) ∪ V (H3)
(disjoint union), w is adjacent all the vertices of H1∪H2∪H3 and v3 is adjacent
to all the vertices of H3. Then |G| = 2(k − 3) + (k − 4) + 2 = 3k − 8 and

σ2(G) = degG(v3) + degG(v) = k − 4 + k − 3 = |G| − k + 1,



where v ∈ V (H1) ∪ V (H2). However for a longest path P containing all vertices
of V (H1) ∪ V (H2) ∪ {w}, G has no spanning caterpillar whose spine is P . Thus
the condition |G| ≥ 3k − 7 is sharp.

Czygrinow, Fan, Hurlbert, Kierstead and Trotter [4] investigated a spanning
caterpillar with bounded degree in the same direction.

Another results on spanning trees with at most k leaves can be found in [5],
[8] and others. The interested reader is referred to the survey paper [7] and the
book [1] for more information on spanning trees.

2 Proof of Theorem 3

In this section, we give a proof of Theorem 3. Our proof uses the following result
on dominating paths of graphs. For a graph G, let σ3(G) is defined to be the
minimum degree sum of three independent vertices of G, where a vertex set X
is called independent if no two vertices of X are adjacent in G.

Lemma 1 (Broersma [2], Corollary 14 (k = 1 and λ = 2)). Let G be a
connected graph. If σ3(G) ≥ |G| − 3, then G has a spanning caterpillar.

Proof of Theorem 3. Let {x, y, z} be any set of three independent vertices of G.
Then

σ3(G) ≥ degG(x) + degG(y) + degG(z)

=
degG(x) + degG(y)

2
+

degG(y) + degG(z)

2
+

degG(z) + degG(x)

2

≥ 3σ2(G)

2
≥ 3(|G| − k + 1)

2

≥ |G| − 7

2
. (by |G| ≥ 3k − 10)

Hence by Lemma 1, G has a spanning caterpillar.

Choose a spanning caterpillar T of G so that its spine is as long as possible.
Let P be a spine of T , and let u and v be the two end-vertices of P , which
are leaves of T . We assign an orientation in P from u to v, and for a vertex x
of P , its successor x+ and the predecessor x− are defined, if they exist. By the
choice of the spanning caterpillar, G has no cycle C with V (C) = V (P ), and
it follows that NG(u) ∩ (V (G) − V (P )) = ∅, NG(v) ∩ (V (G) − V (P )) = ∅ and
NG(u)− ∩NG(v) = ∅. Since NG(u)− ∪NG(v) ⊆ V (P )− {v}, we obtain

degG(u) + degG(v) ≤ |P | − 1.

Since σ2(G) ≥ |G| − k + 1, we have |G| − k + 1 ≤ |P | − 1, which implies
|G| − |P | ≤ k− 2. Therefore the spanning caterpillar T has at most k leaves. 2



3 Proof of Theorem 4

In this section, we give a proof of Theorem 4. We denote by P [u, v] a path
connecting two vertices u and v, which are the end-vertices of P . For a vertex
set X of a graph G, let 〈X〉G denote the subgraph of G induced by X.

Proof of Theorem 4. If G has a hamiltonian path, we are done, and so we may
assume that G does not have a hamiltonian path. Let P be a longest path in G,
and let u and v be the end-vertices of P . We assign an orientation in P from u
to v, and for a vertex x of P , we denote its successor and predecessor, if any,
by x+ and x−, respectively. The following claim holds immediately by the fact
that P is a longest path of G.

Claim 1. (i) NG(u) ∪NG(v) ⊆ V (P ).
(ii) G has no cycle C with V (C) = V (P ).
(iii) NG(u)− ∩NG(v) = ∅ and {v} ∪NG(u)− ∪NG(v) ⊆ V (P ).

By Claim 1, we have

|V (P )| ≥ |NG(u)−|+ |NG(v)|+ |{v}| = degG(u) + degG(v) + 1

≥ σ2(G) + 1 ≥ |G| − k + 2. (1)

Hence |G| − |V (P )| ≤ k− 2. Since G is a connected graph, by connecting all the
vertices in V (G)− V (P ) to P by edges or paths, we can obtain a spanning tree
T of G with at most k leaves.

Next, we prove that T is a caterpillar. Otherwise, there exists a vertex w ∈
V (G)− V (P ) such that NG(w)∩ V (P ) = ∅. By the choice of w and by Claim 1,
the following claim easily holds.

Claim 2. (i) {w, u, v} is an independent set of G.
(ii) NG(w) ⊆ V (G)− V (P )− {w}.

By Claim 2 (i), we have

degG(w) + degG(u) + degG(v) ≥ 3σ2(G)

2
≥ 3

2
(|G| − k + 1). (2)

On the other hand, it follows from Claim 2 (ii) and Claim 1 that

degG(w) + degG(u) + degG(v)

= |NG(w)|+ |NG(u)−|+ |NG(v)|
≤ |G| − |P | − 1 + |P | − 1 = |G| − 2. (3)

By (2) and (3), we have |G| ≤ 3k−7. Hence, the theorem holds when |G| ≥ 3k−6.
Next we consider the case where |G| = 3k − 7. In this case, σ2(G) ≥ |G| −

k + 1 = 2k − 6. Furthermore, if k ≤ 4, then |G| ≤ 5 and so the theorem holds.
Hence we may assume that k ≥ 5.



Assume that |P | = 2k − 5 + t, where t ≥ 0 by (1). Then degG(w) ≤ |G| −
|P | − 1 = k − 3− t. Hence,

degG(w) + min{degG(u),degG(v)} ≤ k − 3− t+
|P | − 1

2
= 2k − 6− t

2
.

Since σ2(G) ≥ 2k − 6, we obtain t = 0, that is, |P | = 2k − 5. Since the above
inequality holds with equality, it follows from (1) that degG(w) = degG(u) =
degG(v) = k − 3. Since σ2(G) ≥ 2k − 6, we have

degG(x) ≥ k − 3 for every vertex x ∈ V (G)− V (P ). (4)

Since the inequality (1) holds with equality,

V (P )− {v} = NG(u)− ∪NG(v) (disjoint union). (5)

Since G is connected, G has a path Q connecting w and a vertex of V (P ).
Note that Q has at least two vertices. Let {z} = V (P ) ∩ V (Q). Since P is a
longest path, z 6∈ NG(u)−. By (5), we obtain z ∈ NG(v). Since P is longest,
we have z+ 6∈ NG(u)−; otherwise Q[w, z] + P [z, u] + uz++ + P [z++, v] is a
longer path than P . Hence z+ ∈ NG(v). Inductively by using (5) and Calim 1,
we obtain that s ∈ NG(v) for every vertex s ∈ V (P [z, v−]). It is immediate
that z− 6∈ NG(v), which implies z− ∈ NG(u)− by (5), and thus z ∈ NG(u).
Inductively, we can show that t ∈ NG(u) for every vertex t ∈ V (P [u+, z]). By
the fact that P is a longest path of G, for every vertex x ∈ V (G) − V (P ), it
follows that NG(u)−∩NG(x) = ∅ and NG(v)+∩NG(x) = ∅. Therefore we obtain

NG(x) ∩ V (P ) ⊆ {z} for every vertex x ∈ V (G)− V (P ). (6)

Claim 3. H = 〈(V (G) − V (P )) ∪ {z}〉G has a hamiltonian path with an end-
vertex z.

We prove Claim 3. If 〈V (G)−V (P )〉G is a complete graph, then we are done.
We may assume that 〈V (G) − V (P )〉G is not complete. By (6), (4) and k ≥ 5,
we have degH(x) = degG(x) ≥ k − 3 ≥ 2 for each vertex x ∈ V (G)− V (P ).

Since 〈V (G)−V (P )〉G is not complete, there exists two non-adjacent vertices
s and t in it, which are adjacent to z since degH(s)+degH(t) ≥ σ2(G) ≥ 2(|H|−
2), and hence degH(z) ≥ 2. Therefore degH(x) + degH(y) ≥ k − 3 + 2 = |H| for
all non-adjacent two vertices x, y ∈ V (H). By Theorem 1, H has a hamiltonian
cycle, and so H has a hamiltonian path with end-vertex z. Therefore Claim 3 is
proved.

Let R be a hamiltonian path with end-vertex z in H, and x be another end-
vertex of R. Then R[x, z] + P [z, u] or R[x, z] + P [z, v] is a path of order at least
k − 2 + (|V (P )|+ 1)/2 > |V (P )|, a contradiction.

Consequently, Theorem 4 is proved. 2
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